پژوهشگران دانشگاه صنعتی سهند تبریز، موفق به طراحی و ساخت نانوکاتالیستی شدهاند که عمر مفید بالایی دارد. کاربرد اصلی این نانوکاتالیست در فرایند ریفورمینگ گاز متان و تبدیل گازهای گلخانهای به گاز سنتز است. استفاده از این دستاورد موجب کاهش تولید محصولات جانب
تبریز: تبدیل گازهای گلخانهای به گاز سنتز در حضور نانوکاتالیست
تولید کک در فرایند ریفورمینگ خشک گاز متان، به عنوان یک محصول جانبی مضر شناخته میشود. این ماده دلیل اصلی کاهش عمر کاتالیستهای به کار رفته در این فرایند است. همچنین عامل دیگر غیرفعال شدن این کاتالیستها، تجمع ذرات بسیار کوچک بر روی کاتالیست در دمای بالای فرایند است. با این حال میتوان با یک طراحی مناسب در ساخت کاتالیستها بر این مشکلات غلبه کرد.
هدف کلی این پژوهش تبدیل گازهای گلخانهای متان و دیاکسیدکربن در فرایند ریفورمینگ خشک متان به گاز سنتز (هیدروژن و منوکسید کربن) بوده است. این هدف با تولید نانوکاتالیستی فعال و پایدار، از موادی مؤثر و به روشی کارا و اقتصادی دنبال شده است.
دکتر محمد حقیقی، مجری این طرح، در توضیح کاربردهای گاز سنتز عنوان کرد: «گاز سنتز عموماً به منظور تولید سوختهای مایع و هیدروکربنهای اکسیژندار مورد استفاده قرار میگیرد. همچنین این گاز به عنوان یک منبع تولید هیدروژن نیز محسوب میگردد.»
به گفتهی این محقق، تولید یک نانوکاتالیست فعال و پایدار به روشی اقتصادی، اولین قدم برای ورود فرایند ریفورمینگ خشک متان به مرحلهی تجاری و صنعتی است. همچنین گاز سنتز تولیدی، به عنوان یک خوراک بسیار مهم و مادر، در صنایع پتروشیمی مورد بهره برداری قرار خواهد گرفت.
نانوکاتالیست تولید شده ترکیبی از مواد مختلف شامل نیکل بر روی زئولیت ZSM-5 و زیرکونیا است که به روش سونوشیمی و در حضور امواج فراصوت تولید شده است. همچنین از روشهای مختلفی همچون XRD، FESEM، TEM و… برای مشخصه یابی آن استفاده شده است. در نهایت این نانوکاتالیست در فرایند ریفورمینگ خشک گاز متان و تبدیل گازهای گلخانهای به گاز سنتز ارزیابی شده است.
حقیقی در ادامه افزود: «نانوکاتالیست تولید شده از اندازهی ذرات بسیار مناسب با توزیع و پراکندگی یکنواخت برخوردار است. با این حال، این خواص با افزدن تقویت کنندهی زیرکونیا بهبود یافته است. نتایج دستگاه TEM نشان داده که پس از افزودن زیرکونیا، توزیع اندازه ذرات از محدوده ۸۰ – ۰ به ۴۰ – ۰ نانومتر تغییر یافته و توزیع آنها نیز به شدت بهبود یافته است.»
طبق نتایج، فعالیت این کاتالیست با درصد ترکیب بهینه در تمامی دماها بهتر از سایر نمونهها بوده به نحوی که در دمای ۸۵۰ درجه سانتی گراد میزان تبدیل متان و CO2 بسیار بالا و نزدیک به میزان ایدهآل بوده است. دستاورد دیگر این پژوهش، کاهش اثرات واکنشهای جانبی موجود در فرایند و کاهش مقدار کک رسوب داده شده بر سطح کاتالیست بوده است که مستقیماً موجب افزایش فعالیت و عمر کاتالیست خواهد شد.
این تحقیقات از همکاری فرهاد رحمانی چیانه، دانشجوی دکترای مهندسی شیمی دانشگاه صنعتی سهند تبریز، دکتر محمد حقیقی پراپری، عضو هیأت علمی و دانشیار دانشگاه صنعتی سهند تبریز، و همکارانشان در مرکز تحقیقات راکتور و کاتالیست این دانشگاه صورت گرفته و نتایج آن در مجلهی Journal of Power Sources (جلد ۲۷۲، شماره ۱، سال ۲۰۱۴، صفحات ۸۱۶ تا ۸۲۷) انتشار یافته است.
هدف کلی این پژوهش تبدیل گازهای گلخانهای متان و دیاکسیدکربن در فرایند ریفورمینگ خشک متان به گاز سنتز (هیدروژن و منوکسید کربن) بوده است. این هدف با تولید نانوکاتالیستی فعال و پایدار، از موادی مؤثر و به روشی کارا و اقتصادی دنبال شده است.
دکتر محمد حقیقی، مجری این طرح، در توضیح کاربردهای گاز سنتز عنوان کرد: «گاز سنتز عموماً به منظور تولید سوختهای مایع و هیدروکربنهای اکسیژندار مورد استفاده قرار میگیرد. همچنین این گاز به عنوان یک منبع تولید هیدروژن نیز محسوب میگردد.»
به گفتهی این محقق، تولید یک نانوکاتالیست فعال و پایدار به روشی اقتصادی، اولین قدم برای ورود فرایند ریفورمینگ خشک متان به مرحلهی تجاری و صنعتی است. همچنین گاز سنتز تولیدی، به عنوان یک خوراک بسیار مهم و مادر، در صنایع پتروشیمی مورد بهره برداری قرار خواهد گرفت.
نانوکاتالیست تولید شده ترکیبی از مواد مختلف شامل نیکل بر روی زئولیت ZSM-5 و زیرکونیا است که به روش سونوشیمی و در حضور امواج فراصوت تولید شده است. همچنین از روشهای مختلفی همچون XRD، FESEM، TEM و… برای مشخصه یابی آن استفاده شده است. در نهایت این نانوکاتالیست در فرایند ریفورمینگ خشک گاز متان و تبدیل گازهای گلخانهای به گاز سنتز ارزیابی شده است.
حقیقی در ادامه افزود: «نانوکاتالیست تولید شده از اندازهی ذرات بسیار مناسب با توزیع و پراکندگی یکنواخت برخوردار است. با این حال، این خواص با افزدن تقویت کنندهی زیرکونیا بهبود یافته است. نتایج دستگاه TEM نشان داده که پس از افزودن زیرکونیا، توزیع اندازه ذرات از محدوده ۸۰ – ۰ به ۴۰ – ۰ نانومتر تغییر یافته و توزیع آنها نیز به شدت بهبود یافته است.»
طبق نتایج، فعالیت این کاتالیست با درصد ترکیب بهینه در تمامی دماها بهتر از سایر نمونهها بوده به نحوی که در دمای ۸۵۰ درجه سانتی گراد میزان تبدیل متان و CO2 بسیار بالا و نزدیک به میزان ایدهآل بوده است. دستاورد دیگر این پژوهش، کاهش اثرات واکنشهای جانبی موجود در فرایند و کاهش مقدار کک رسوب داده شده بر سطح کاتالیست بوده است که مستقیماً موجب افزایش فعالیت و عمر کاتالیست خواهد شد.
این تحقیقات از همکاری فرهاد رحمانی چیانه، دانشجوی دکترای مهندسی شیمی دانشگاه صنعتی سهند تبریز، دکتر محمد حقیقی پراپری، عضو هیأت علمی و دانشیار دانشگاه صنعتی سهند تبریز، و همکارانشان در مرکز تحقیقات راکتور و کاتالیست این دانشگاه صورت گرفته و نتایج آن در مجلهی Journal of Power Sources (جلد ۲۷۲، شماره ۱، سال ۲۰۱۴، صفحات ۸۱۶ تا ۸۲۷) انتشار یافته است.